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REVIEW 

The Energy Method, Stability and Nonlinear Convection. By B. STRAUGHAN. 

Osborne Reynolds was the first to employ the time rate of change of the total energy 
of an arbitrary disturbance to establish sufficient conditions for the stability of the 
underlying flow. Later studies by Orr, then by Serrin and by Joseph, mark the 
significant steps in understanding the virtues and weaknesses of this approach. This 
classical energy theory provides a value for the bifurcation parameter (i.e. Reynolds 
number, Rayleigh number, etc.) below which any disturbance must decay 
monotonically to zero. However, there tends to be quite a variation, from problem 
to problem, in how conservative this bound actually is. For example, in some 
supercritical problems (i.e. BBnard convection and narrow-gap Taylor-Couette flow) 
energy theory and linear theory merge at  the point of bifurcation and thereby rule 
out any possibility of subcritical transitions. In this case, energy theory provides a 
tight bound in the sense that if the parametric value below which energy stability is 
guaranteed is violated, instability indeed results. Unfortunately, this is the exception 
rather than the norm in energy theory performance. An important case in point is 
parallel shearing flows, in which energy theory provides an exceedingly low bound 
(by more than an order of magnitude) for the observed subcritical, local and 
complicated transitional processes. As a consequence, for several decades attention 
has turned from global integral formulations to the current mechanistic and 
numerical studies. 

The book by Straughan is the visible tip of a new industry (other workers in the 
field include Galdi, Mulone, Padula and Rionero) seeking to improve classical energy 
theory results by considering generalizations of ‘energy ’ in the Lyapunov spirit. 
Typically, they are able to increase the energy stability boundary, but only at the 
cost of settling for ‘conditional ’ energy stability results. Conditional energy stability 
theory (first advanced by Joseph & Hung 1971, and again in Joseph 1976a, b ) ,  has 
the added stipulation that decay is guaranteed only for those disturbances having 
initial energies below some derived threshold value. 

The principal example studied in this book, drawn from Galdi & Straughan (1985), 
is convection with rotation. Since the Coriolis term does not work, it does not appear 
in the usual energy integral, and therefore classical energy theory results are identical 
for both rotating and non-rotating convection. However, the observations of Rossby 
(1969) and linear theory suggest that the critical Rayleigh number is a strictly 
increasing function of the rotation rate (measured by the Taylor number). Straughan 
commences his study, admittedly in heuristic fashion, by advancing a rather 
complicated generalized ‘ energy ’ for this problem. Reviewing the surrounding 
literature and other problems addressed by Straughan, it seems that the primary 
motivation for the choice of ‘energy’ comes from the linear part of the differential 
operator. The plotted results appear remarkably successful in paralleling the 
observations and linear theory. What are not adequately discussed or plotted are the 
amplitude restrictions on the ‘energy’ stability boundary. Indeed, only the 
‘nonlinear’ results corresponding to disturbances of zero (!) initial energy are 
displayed. Using equation (5.36) in Galdi & Straughan we have determined a bound 
on their energy stability boundary for disturbances having initial energy amplitudes 
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FIGURE 1. Rotating convection with Pr > 1. Taken from Straughan (1992), figure 6.2. 

less than lop6 times the scale amplitude (the viscous diffusion velocity). This result 
is plotted in figure 1, which is based on figure 6.2 of the book under review. Presented 
are four curves (A, B, S, L) and four regions (I, 11, 111, IV). Curve L is the linear 
stability curve, so that region IV is linearly unstable while regions I, 11, III and any 
area between curves L and S are &early stable. Curve A represents the classical 
energy theory results, and so region I is stable to disturbances of arbitrary size. Curve 
S represents Straughan’s zero amplitude stability boundary, and curve B bounds 
from above region I1 wherein Straughan’s stability boundary must reside. Thus 
in region I11 the new theory unfortunately provides no information concerning the 
fate of disturbances having initial amplitudes in excess of lop6, the scale amplitude. 
One is led to question the value of curve S and bound B as useful ‘nonlinear’ results. 
Neither curve delimits the subcritical finite-amplitude observations of Rossby. 

An order-one conditional energy bound would be of considerable interest, 
particularly in a parallel shear flow problem. Even more ambitious would be the 
determination of the role of the nonlinear terms (above certain amplitudes they can 
be stabilizing), which would reduce the task of finding amplitude bounds based on 
the presumption that they are entirely destabilizing. Here in rotating convection, for 
Straughan’s ‘energy ’ functional, the order-one bound is several orders of magnitude 
to the right of the graph above, and with a slope much less than the linear results, 
L. The purported goal is admirable, but it is the reviewers’ opinion that a book on 
the topic should await the discovery of a formal path to an ‘energy ’ functional from 
which results of clearer value are attained. 
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